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SUMMARY

A neural network can sustain and switch between
different activity patterns to execute multiple behav-
iors.Bymonitoring thedecisionmaking fordirectional
locomotion through motor circuit calcium imaging
in behaving Caenorhabditis elegans (C. elegans), we
reveal that C. elegans determines the directionality
of movements by establishing an imbalanced output
between the forward and backward motor circuits
and that it alters directions by switching between
these imbalanced states. We further demonstrate
that premotor interneurons modulate endogenous
motoneuron activity to establish the output imbal-
ance. Specifically, the UNC-7 and UNC-9 innexin-
dependent premotor interneuron-motoneuron cou-
pling prevents a balanced output state that leads to
movements without directionality. Moreover, they
act as shunts to decrease the backward-circuit
activity, establishing a persistent bias for the high
forward-circuit output state that results in the inherent
preference ofC. elegans for forward locomotion. This
study demonstrates that imbalanced motoneuron
activity underlies directional movement and estab-
lishes gap junctions as critical modulators of the pro-
perties and outputs of neural circuits.

INTRODUCTION

The simplicity and experimental amenability of invertebrate

nervous systems have helped develop critical concepts that

guide our understanding of how complex neuronal networks

operate (Getting, 1989; Goulding, 2009;Marder et al., 2005; Nus-

baum and Beenhakker, 2002). With a fully elucidated anatomical

wiring diagram (Chen et al., 2006; White et al., 1976), a large

collection of genetic mutants (Brenner, 1974), andmaturing tools

for optical imaging and interrogation of circuit activity (Kerr et al.,

2000; Leifer et al., 2011; Nagel et al., 2005; Stirman et al., 2011),

Caenorhabditis elegans (C. elegans) offers an excellent model for
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genetic interrogation of fundamental principles that govern cir-

cuit formation and function.

C. elegans exhibits rhythmic, undulatory forward and back-

ward locomotion (Brenner, 1974). Under standard laboratory

culture conditions, C. elegans predominantly generates contin-

uous forward movement that is occasionally interrupted by brief

backing, with the reversal frequency modulated by sensory

responses (Gray et al., 2005; Pierce-Shimomura et al., 1999).

Electron microscopic reconstruction and targeted neuronal ab-

lation of the C. elegans adult nervous system has led to the iden-

tification of core components of the motor circuit: five pairs of

premotor interneurons, historically named as the command

interneurons, receive and integrate inputs from sensory and

upper layer interneurons and output upon four classes of moto-

neurons to generate coordinated locomotion (White et al., 1976).

For directional movement, the AVA, AVE, and AVD premotor

interneurons were proposed to drive or modulate backward

motion through innervating the Amotoneurons via both chemical

and electrical synapses. The AVB and PVC premotor interneu-

rons, on the other hand, innervate the Bmotoneurons exclusively

through gap junctions and chemical synapses, respectively, to

mediate forward motion (Chalfie et al., 1985; Wicks et al.,

1996; illustrated in Figures 1A and 1B).

Despite knowing the physical connectivity of the motor circuit,

mechanisms through which the C. elegans motor circuit selects

and alters the direction of movement remain to be deciphered.

The laser ablation of any single class of premotor interneurons

failed to abolish movement (Chalfie et al., 1985; Wicks et al.,

1996), indicating functional redundancy and modulation in such

a small circuit. The ablation of AVB or AVA interneurons alone,

however, led to the most prominent, albeit partial, impairment

of spontaneous forward or backward movements, respectively,

establishing them as the most critical regulators for directional

motion (Chalfie et al., 1985; Wicks et al., 1996). Coincidentally,

AVB and AVA are the premotor interneurons that form the vast

majority of gap junctions with motoneurons (White et al., 1976),

implying a potential involvement of gap junctions in determining

directional movement. Consistently, we found that loss-of-

function mutations in two innexins, the invertebrate gap junction

proteins, led to altered preference and duration of C. elegans

directional movement (see Results).
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In the present study, through in vivo calcium imaging, electro-

physiology, and behavioral analyses of wild-type animals and in-

nexin mutants, we reveal several fundamental mechanisms for

the decision-making process of directional movement by the

C. elegans motor circuit: (1) the motor circuit establishes imbal-

anced forward and backward motoneuron activity states that

determine the directionality of movement, and it alternates

between these states to change directions; (2) premotor inter-

neurons modulate endogenous motoneuron activity to establish

the imbalancedmotoneuron activity states; and (3) gap junctions

of the backward circuit reduce the backward-circuit output,

which is necessary for, and establishes the intrinsic bias toward,

continuous forward movement.

RESULTS

Reciprocal Activation of Two Classes of Premotor
Interneurons Correlates with Directional Movement
To address mechanisms that enable the motor circuit to execute

directional movement, we established a semiautomated in vivo

calcium imaging system to identify activity patterns of the

C. elegans motor circuit associated with directional movements

(see Figure S1A available online; Experimental Procedures).

Briefly, late larvae (L4) or adult animals expressing a genetic

calcium sensor cameleon (Miyawaki et al., 1997) in variousmotor

circuit neurons were allowed to move and alter directions spon-

taneously on glass slides. Fluorescent signals from the neuron

somawere tracked over time; the intensity and positional change

of the fluorescent objects provided indices for neuronal activity

and the direction of movement, respectively. Calcium-insensi-

tive cameleons served as negative controls for all reporters

(Figures 4 and 6; Figure S3).

We first examined the activity of AVA, AVE, and AVD pre-

motor interneurons that were proposed to drive or modulate

backing. Simultaneous imaging of these tightly clustered neu-

rons, which was only possible in animals with restricted move-

ment (Experimental Procedures), revealed temporally correlated

calcium profiles for AVA and AVE, indicating their coactivation

and inactivation (Figure 1C; Figure S1B; Movie S1, part A). We

did not detect activity in AVD (Figure 1C), which probably reflects

their proposed role in touch-stimulated, instead of spontaneous,

movement (Chalfie et al., 1985; Wicks et al., 1996). To better

correlate AVA and AVE activity with motion, we allowed animals

to move more freely and imaged the interneuron pair as a single

region of interest (ROI) (Experimental Procedures). Consistent

with previous reports for AVA (Ben Arous et al., 2010; Chronis

et al., 2007), the initiation of reversals (Figure 1D, dotted vertical

lines) temporally correlated with a sharp increase of intracellular

calcium in AVA/AVE (Figure 1D, upper trace, right). The period of

gradual decline in the calcium transient correlated with contin-

uous forward motion (Figure 1D; Movie S1, part B). Therefore,

the activation of AVA/AVE is associated with backward motion.

In contrast, the initiation of forward movements (Figure 1E,

dotted vertical lines) generally corresponded with a calcium

increase in AVB (Figure 1E, upper trace, right), the key premotor

interneuron required for spontaneous forward movement (Chal-

fie et al., 1985; Wicks et al., 1996), whereas a decrease of the

calcium transient correlated with either a reduced forward
velocity or reversals (Figure 1E), correlating AVB activation with

forward motion. We could not record PVC, premotor interneu-

rons that contribute to stimulated forward motion (Chalfie

et al., 1985; Wicks et al., 1996), due to the low reporter expres-

sion level (data not shown).

An inverse correlation between AVA/AVE and AVB activation

with the directionality of themovement ofC. elegans implies their

reciprocal activation. To test this possibility, we simultaneously

imaged AVE and AVB, the only neuron pair that is spatially sepa-

rated sufficiently to permit unambiguous tracking of calcium

signals in animals with restricted movement. Indeed, the calcium

change in AVE was anticorrelated with the calcium change in

AVB (Figure 1F; Movie S1, part C). These results suggest that re-

ciprocal activation and inactivation between the forward (AVB)

and backward (AVA/AVE) premotor interneurons correlate with

the directional movement of C. elegans.

Imbalanced A and B Motoneuron Output Correlates
with Directional Movement
The C. elegans wiring diagram predicts that AVA/AVE and AVB

innervate the A and B motoneurons, respectively, via chemical

and/or electrical synapses (White et al., 1976). We simulta-

neously imaged VB9 and VA8, twomotoneurons that provide ex-

citatory inputs onto adjacent ventral midposterior body muscu-

lature, as a proxy for the motoneuron output of forward and

backward circuits (Figure 1A).

During episodes of continuous forward and backward move-

ments, VB9 and VA8motoneuronsmaintained a clear separation

in their calcium levels (Figures 2A and 2B; Movie S1, part D).

Noticeably, a higher mean calcium level of VB9 (denoted by

a red dotted line in Figure 2A) than of VA8 (denoted by a blue

dotted line), referred to as the B > A state, coincided with contin-

uous forward movement, whereas a higher mean activity level of

VA8 than of VB9, referred to as the A > B state, coincided with

backing (Figure 2A, lower trace). During continuous movement,

regardless of the directionality, both VA8 andVB9 often exhibited

periodic, sometimes in-phase changes over their mean calcium

level (Figure 2A, asterisks), whereas VB9 and DB6 and VA8 and

DA6, the same class motoneuron pairs that input onto the oppo-

site ventral and dorsal musculature (Figure 1A), tend to exhibit

mostly out-of-phase changes (Figure 2B, asterisks). The cause

for these small calcium changes remains to be determined.

On the other hand, directional changes (Figure 2A, denoted

by dotted vertical lines) coincided with the large, reciprocal

switches between the mean calcium level of VA8 and VB9 or

the A > B and B > A states (Figure 2A, denoted by blue and

red arrows; Figure S1D). Importantly, the transition from back-

ward to forwardmotion was temporally correlated with a calcium

rise in VB9 and a calcium decrease in VA8 (Figure 2C, left),

whereas reversals temporally correlated with a reversed pattern

(Figure 2C, right). Critically, the initiation of a reciprocal change in

the A and B motoneuron activity temporally correlates with the

initiation of directional change. It is noted that the initiation of

directional change generally preceded the crossover between

VA8 and VB9 calcium level. The cause for this lag is unknown;

one possible explanation is that because VA8/VB9 is located in

the midbody, a change in directionality that has taken place in

adjacent body segments contributes to the positional change
Neuron 72, 572–586, November 17, 2011 ª2011 Elsevier Inc. 573



Figure 1. Reciprocal Activation of Two Classes of Premotor Interneurons during Directional Movement

(A) The anatomic organization of premotor interneurons (AVA, AVE, AVB, and PVC) and motoneurons (VA, VB, DA, and DB) that innervate ventral and dorsal

musculature. VA8andVB9axon-dendriteorganization is illustratedassynaptic input (open triangles) andoutput (neuromuscular junctions, solid triangles)processes.

(B) A schematic diagram of the elucidated anatomic connectivity of the C. elegansmotor circuit (White et al., 1976). Hexagons represent premotor interneurons,

circles indicate motoneurons, arrows show chemical synapses, and lines represent gap junctions. Proposed motor circuit neurons responsible for forward and

backward locomotion are coded in red and blue, respectively.

(C) Simultaneous imaging of multiple premotor interneurons. Calcium transient traces for indicated neurons were shown as the YFP/CFP ratio over time by

respective cameleon calcium sensors; recordings were carried out in animals with limited movements to permit unambiguous tracking of individual neurons (see

Experimental Procedures). AVA and AVE, but not AVD, showed synchronized activation.

(D and E) Left: a real-time correlation of calcium transients of specific neurons (top traces) with the direction and velocity of motion (lower traces). These

recordings were carried out in animals with fairly freemovement to allow correlation between calcium signals andmotion. The lower traces present themovement

at each time point (x axis). Y axis indicates the velocity of motion in arbitrary units (a.u.). The position of each time point, above or beneath the horizontal line,

represents motion in forward or backward directions, respectively.

(D) Left: the periodic rise of calcium transients in AVA/AVE (imaged as a single ROI) correlated with the initiation of backward movement (dotted vertical line,

bottom trace). Right: averaged calcium transient changes (y axis) before (1 s) and after (2 s) the initiation of reversal (t = 0; x axis) exhibited a tight temporal

correlation between AVA/AVE activity increase and reversal.
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of the VA8/VB9 soma prior to a complete reversal of the activity

level.

Together, these results indicate that the C. elegans motor cir-

cuit establishes and maintains an imbalanced activity between

its forward (Bmotoneuron) and backward (Amotoneuron) output

module to permit directional movement. Not only do the B > A

and A > B output patterns correlate with continuous forward

and backward movement, respectively, but a switch between

these patterns also coincides with the directional change. The

preference of wild-type C. elegans for forward movement thus

implies an inherent bias of its motor circuit to maintain B > A,

the higher forward-circuit output pattern.

Two Innexin Mutants Cannot Execute Continuous
Forward Movement
How does the C. elegans motor circuit establish an imbalanced

output of A and B motoneuron activity? We examined the

involvement of UNC-7 and UNC-9, two innexins expressed by

the nervous system, because of the specific deficit of the respec-

tive innexin mutants in directional movements (see below).

unc-7 and unc-9 null mutants resulted from Brenner’s original

C. elegansmutant screen (Brenner, 1974) and are characterized

by a similar movement defect described as kinking: instead of

generating smooth body bends, these animals assumed dis-

torted, or ‘‘kinked,’’ postures (Barnes andHekimi, 1997; Brenner,

1974; Starich et al., 1993). unc-9 unc-7 double-null mutants

exhibit identical kinker behaviors, suggesting that they regulate

locomotion through shared biological pathways. Previous

studies revealed their roles in the coupling between AVB pre-

motor interneurons and B motoneurons and between body

wall muscles, as well as in neuromuscular junction morphology.

Restoring AVB-B or muscle coupling, or neuromuscular junction

morphology, in these innexin mutants, however, could not re-

store defective locomotion (Liu et al., 2006; Starich et al., 2009;

Yeh et al., 2009).

To understand the physiological nature of their motor defects,

we examined these innexin mutants by the body curvature

(Pierce-Shimomura et al., 2008) and automated motion analyses

(Experimental Procedures). In body curvature analyses, the

forward motion is represented as body bends propagating in

a head-to-tail direction (Figure 3A, black arrow) and backing is

represented as body-bend propagation in a tail-to-head direc-

tion (Figure 3A, arrowheads). For motion analyses, we quantify

the propensity (total percentage of time, Figure 3B) and conti-

nuity (averaged duration, Figure 3C) of directional movement.

Wild-type animals favor forward movement over backing (Fig-

ure 3A, top right; Movie S2, part A), moving both predominantly

(Figure 3B) and continuously (Figure 3C) forward. unc-7, unc-9,

and unc-9 unc-7 innexin mutants reduced the overall propensity

for forward movement (Figure 3B) and failed to execute contin-

uous forward movement (Figure 3C). Instead, they generated
(E) The transition from backing to forward movement (dotted vertical lines) correla

which it failed to correlate with AVB increase (dotted vertical line marked by *) pro

calcium transient change (y axis) in AVB before and after the directional change

motion, albeit with a slight delay.

(F) Left: AVE and AVB showed out-of-phase calcium transient profiles. Righ

Standardized data from seven recordings were subjected to correlation analysis
discontinuous short body bends (Figure 3A, asterisks in middle

and lower right panels), some propagating in opposite directions

along different body segments (white arrows in boxed areas), re-

sulting in a kinked body posture (Figure 3A, left panels). Such

a mode of movement, which led to no significant travel in either

direction, is referred to as kinking henceforth.

Contrary to the failure in continuous forward movement,

these innexin mutants propagated full tail-to-head body bends

(Figure 3A, arrowheads) that led to continuous backing (Fig-

ure 3C). Moreover, in contrast to a reduced forward movement,

they exhibited an increased propensity to move backward (Fig-

ure 3B; Movie S2, parts B–D). Therefore, the motor deficit of in-

nexin mutants, a specific inability for continuous forward move-

ment, concomitant with hyperactivated backing reflects a shift

from wild-type animals’ preference for forward motion to

backing.

Innexin Mutants Cannot Establish B > A, the Higher
Forward-Circuit Output Pattern
To identify the cause of the altered characteristics of directional

motion, we examined the motoneuron output pattern in these in-

nexin mutants. Wild-type animals generated either a B > A or an

A > B pattern that is associated with continuous forward or back-

ward movement, respectively (Figures 2A, 4A, and 4E). Strik-

ingly, innexin mutants specifically failed to generate the B > A

pattern.

During kinking, a phase in which they did not travel in either

direction, VA8 and VB9 exhibited long periods of superimposed

calcium transient profiles (Figures 4B, 4C, and 4E). Such a state,

referred to as A = B henceforth, contrasts the case in wild-type

animals in which VA8 and VB9 calcium profiles were almost

always separated (Figures 2 and 4A). This indicates that kinking

represents a frustrated, or nonproductive, state in which the

body wall musculature receives a similar level of inputs from

the A and B motoneurons to move in opposite directions.

When innexin mutants moved backward, VA8 exhibited a

higher activity than that of VB9 (A > B state), with a mean differ-

ence similar to that of wild-type animals during backing (shaded

areas in Figures 4B, 4C, and 4E). Therefore, although these in-

nexin mutants were capable of generating the backing-associ-

ated, higher backward-output pattern (A > B), they failed to

establish the higher forward-output pattern (B > A) that corre-

lated with continuous forward movement in wild-type animals.

It was instead replaced by B = A, an equal-output pattern that

correlated with kinking.

Reestablishing the B > A Output Pattern Restores
Continuous Forward Movement
If the inability of innexin mutants to execute continuous forward

movement results from their inability to break an A =B output, we

should be able to convert kinking into forward movement by
ted with an increase of calcium transients in AVB (top trace). The single case in

bably reflected that this animal quickly switched into backing. Right: averaged

(t = 0). AVB exhibited an increase during the initiation of reversal and forward

t: AVE and AVB activity change exhibits a significant negative correlation.

.
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Figure 2. An Imbalanced A and B Motoneuron Activity Correlates with Directional Movement

(A and B) A real-time correlation between calcium transients of coimaged motoneuron neurons with the directionality and velocity of movement. Top: changes in

cameleon signals for individual neurons (y axis) over time (x axis). Bottom: y axis indicates the velocity of motion in a.u. The position of each time point, above or

beneath the horizontal line, represents motion forward or backward, respectively.

(A) A higher mean calcium transient in VA8 (blue dotted lines) or in VB9 (red dotted lines) correlated with backward or forward motion, respectively, whereas

a reciprocal change of the mean activity level (red and blue arrows) correlated with directional change. Small, sometimes in-phase changes over the baseline

calcium transients for VA8 and VB9 (*) occurred during continuous forward and backward movements.
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Figure 3. Innexin Mutants Cannot Execute Contin-

uous Forward Movement

(A) Left: body postures of wild-type and innexin animals.

Right: body curvature along the length of a moving animal

of respective genotypes, as in the left panels, plotted over

time. Wild-type animals exhibit primarily continuous for-

ward motion, shown as full head-to-tail wave propagation

(black arrow), with interruptions of short backing or tail-to-

head propagation (arrowhead). Innexin mutants exhibit

incomplete head-to-tail wave propagation and therefore

no continuous forward movement (asterisks) but can

coordinate backward movement (arrowheads). Examples

of short body bends simultaneously propagating in op-

posite directions in innexin mutants are marked (white

arrows in boxed areas). Scale bar represents 100 mm.

(B) The total percentage of time (video frames) animals

of respective genotypes spent in forward or backward

motion, or pausing. A movement of the center point of the

animal %1 pixel between each video frame (1 fps) is

defined as pausing in this study. Innexin mutants increase

the propensity of backing. Time-lapse images of animals of

the same genotype were pooled to generate the data set.

(C) An averaged time duration of continuous forward and

backward movements for wild-type and innexin mutants.

Innexin mutants exhibit reduced duration in forward

motion and an increased duration in backing. n = 7, n = 12,

n = 10, and n = 15 for wild-type, unc-7, unc-9, and unc-9

unc-7 animals, respectively. ***p < 0.001 against wild-type

by the Mann-Whitney U test. Error bars represent SEM.
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reestablishing the higher forward-circuit output (B > A) pattern.

Indeed, when we reduced A motoneuron activity by expressing

TWK-18(gf), a constitutively active K+ channel that induces

membrane hyperpolarization (Kunkel et al., 2000), a B > A activity

profile was reestablished (Figures 4D and 4E), accompanied by

a restored continuous forward motion in these innexin mutants

(Figure S2A; Movie S3, parts A–D). Behaviorally, this transgene

also effectively reduced hyperactivated backing in innexin

mutants (Figure S2A; Movie S3, parts A–D).

These results demonstrate that the motor deficits of these in-

nexin mutants mainly result from their inability to establish or

maintain the B > A output pattern. Moreover, they indicate that

an output imbalance between the forward and backward circuits
(B) During continuous forwardmovement, Bmotoneurons (VB9 andDB6) exhibit higher calcium levels

A and B motoneurons that innervate dorsal and ventral musculature (VA versus DA or VB versus DB)

their calcium transients.

(C) The initiation of directional change correlated with reciprocal changes of the A and B motoneuro

motion (t = 0) coincided with an increase in VB9 activity and a decrease in VA8 activity. Right: the trans

an increase in VA8 activity and a decrease in VB9 activity.

Neuron 72, 572–
not only correlates with, but is also necessary

for, directional movement in wild-type animals.

Indeed, decreasing the forward-circuit output

in wild-type animals, either by reducing AVB

premotor interneuron or B motoneuron activity

by TWK-18(gf) (Experimental Procedures), led

to not only a reduced forward motion but also

an increased backing (Figure S2B; Movie S3,
parts E and F), further supporting a causal effect of an imbal-

anced A and B activity during directional movement.

Gap Junctions in the Backward Circuit Are Necessary
for Forward Movement
UNC-7 and UNC-9 innexins are necessary for establishing the

B > A pattern to execute continuous forward movement. We

next investigated where each innexin is most critically required

to mediate forward movement. Both innexins are broadly ex-

pressed by all premotor interneurons and motoneurons (Altun

et al., 2009; Starich et al., 2009; Yeh et al., 2009). Similar to

the result of a previous mosaic analysis (Starich et al., 2009),

restoring the expression of wild-type UNC-7 only in AVA, one
than that of Amotoneurons (VA8 andDA6). The subclass of

often show an out-of-phase change (*) over the baseline of

n activities. Left: the transition from backward to forward

ition from forward to backwardmotion (t = 0) coincided with

586, November 17, 2011 ª2011 Elsevier Inc. 577
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Figure 4. An Aberrant A = B Activity Pattern

Prevents Forward Motion

(A–D) Representative calcium transients of VA8 (blue

traces) and VB9 (red traces) motoneurons in the same

animal of respective genotypes.

(A) In wild-type animals, during sustained backward

movement (left, marked area), VA8 calcium transient level

was higher than that of VB9. During sustained forward

movement (left, unmarked areas), VB9 calcium level was

higher than that of VA8.

(B and C) The kinking phase of innexin single and double

mutants corresponded with a period when VA8 and VB9

exhibited similar calcium levels (unmarked areas),

whereas their backward movement corresponded with

a phase when the VA8 activity was higher than the VB9

activity (shaded areas).

(D) A TWK-18(gf) transgene expressed in A motoneurons

effectively reduced VA8 calcium transient (blue traces) in

wild-type animals (left) and unc-7 mutants (right).

(E) A quantification of the activity difference between VA8

(blue circles) and VB9 (red circles) during forward, back-

ward, and kinkingmotions of wild-type and unc-7mutants,

with or without the TWK-18(gf) transgene. Measurements

for VA8 and VB9 from the same animal are connected. The

activity difference during the indicated phase of movement

was normalized by [VB9� VA8]/[VB9 + VA8]. n.s. indicates

not statistically significant; ***p < 0.001, **p < 0.01 by the

Mann-Whitney U tests.
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of the premotor interneurons of the backward circuit restored

continuous forward movement in unc-7 mutants (Figures 5A

and 5B; Movie S4, parts A and B). UNC-9 was also required

in the backward circuit, specifically in the A motoneurons to

restore forward motion in unc-9 mutants (Figures 5A and 5B;

Movie S4, part C). Moreover, a concomitant and specific ex-

pression of UNC-7 and UNC-9 in premotor interneurons and

motoneurons of the backward circuit, respectively, was neces-

sary to restore continuous forward movement in unc-9 unc-7

mutants (Figures 5A and 5B; Movie S4, part D). Therefore, dis-

rupted AVA-A communication, normally mediated by UNC-7

and UNC-9, contributes significantly to the inability of unc-7

and unc-9 innexin mutants to travel forward.

AVA communicate with Amotoneurons through both chemical

and electrical synapses (Figure 1B). We examined the localiza-

tion of the functionally critical innexins by immunofluorescent

staining of unc-9 unc-7 null animals coexpressing a functional

UNC-7::GFP in premotor interneurons and UNC-9 in motoneu-

rons of the backward circuit (Experimental Procedures). A punc-

tate staining pattern of variable sizes was observed along where

dendrites of these premotor interneurons and processes of
578 Neuron 72, 572–586, November 17, 2011 ª2011 Elsevier Inc.
motoneurons fasciculate. Almost every UNC-9

punctum tightly associated with a UNC-7::GFP

punctum (Figure 5C). Given that AVA are the

main premotor interneuron gap junction part-

ners of A motoneurons (White et al., 1976) and

that UNC-7 and UNC-9 can form heterotypic

gap junctions when ectopically expressed in

Xenopus oocytes (Starich et al., 2009), together

these results strongly supports the idea that
AVA-A gap junctions, mediated by UNC-7 and UNC-9, are

necessary for continuous forward movement.

AVA-A Coupling Reduces AVA Activity to Prevent
Backward Movement
Howdo gap junctions of the backward circuit allow and establish

a bias for forward movement? In this and the next section, we

show that AVA-A coupling reduces the activity of the backward

circuit through two concurrent effects, both of which are required

to permit the higher forward-circuit output that drives forward

motion. First, AVA-A coupling reduces AVA activity to prevent

hyperactivation of backing; this is supported by the following

lines of evidence.

First, innexin mutants exhibit an elevated backward premotor

interneuron activity via calcium imaging analyses. In innexin

mutants, the level of calcium transients in AVA and AVE was

significantly higher than that of wild-type animals, whether they

were imaged as a single ROI (Figures 6A–6A00) or separately

(Figures S3A–S3A00 and S3B–S3B00), suggesting that premotor

interneurons of the backward circuit become hyperactivated in

the absence of UNC-7 or UNC-9 innexins. Consistent with an
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Figure 5. Gap Junctions of the Backward Circuit Are Necessary for Continuous Forward Motion

(A) UNC-7 and UNC-9 are critically and differentially required in the premotor interneurons and motoneurons to restore forward movements of respective innexin

mutants.Wild-type UNC-7 and/or UNC-9 cDNAswere expressed by different promoters in respective innexin null mutants indicated on the left. + and� represent

the presence and absence of continuous forward motion in animals in the last larvae or adult stage;�/+ refers to a very slight improvement of forwardmovement.

Neurons of the proposed forward and backward circuit (as illustrated in Figure 1B) are coded in red and blue, respectively.

(B) Directional movement of innexinmutants carrying various transgenes shown in (A), quantified by the duration of forwardmovement in seconds (top), as well as

the percentage of time the animal spent in forward versus backward motion (bottom) by the motion analysis program. Data for representative full (+), minor (�/+),

and no (�) rescue in transgenic innexin mutants were shown. Note that Popt-3-UNC-7 was scored as – despite leading to a change in forward duration that was

statistically significant from unc-7 (*). This is because the increase was�0.5 s, such a small difference that was indistinguishable by eye. *** p < 0.001, ** p < 0.01

by the Mann-Whitney U tests. Error bars represent SEM.

(C) UNC-7::GFP (green) and UNC-9 (red) coexpressed in the backward premotor interneurons and Amotoneurons, respectively, in unc-9 unc-7 null mutants and

colocalized along contacting ventral cord neurites. Scale bar represents 5 mm.
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inverse activation between forward and backward premotor

interneurons (Figure 1F), the calcium level of AVB was reduced

in innexin mutants (Figures 6B–6B00). The change of cameleon
signals was not due to a change in the expression level of these

calcium sensors in innexin mutants (Figure S3C). The reciprocal

change in the premotor interneuron activity, specifically an
Neuron 72, 572–586, November 17, 2011 ª2011 Elsevier Inc. 579



Figure 6. AVA-A Coupling Reduces AVA Activity

(A–A00) Via calcium imaging analyses, unc-7 mutants ex-

hibited increased AVA/AVE activity, which was reverted

to wild-type level by restoring UNC-7 expression in AVA

(Prig-3::UNC-7).

(A) Representative calcium transient traces in AVA/AVE of

wild-type and innexin mutant animals recorded under

identical experimental conditions.

(A0) Raster plots of calcium traces; each horizontal line

corresponds to the YFP/CFP ratio of an animal of the

respective genotypes, as in (A), during the 5min recording,

pseudocolored to represent calcium transient level.

(A00) Mean and distribution of the calcium transient level of

each genotype. Each data point represents the averaged

YFP/CFP ratio during the 5 min recording for each animal.

n for each genotype is shown in parentheses.

(B–B00) AVB exhibited a decreased activity in unc-7 mu-

tants. *p < 0.05, **p < 0.01, ***p < 0.001 by the Mann-

Whitney U test.
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increase in AVA/AVE (backward circuit) and a decrease in AVB

(forward circuit), correlates with the shift of innexinmutants’ pref-

erence in directional motion to backing.

When UNC-7 expression was specifically restored in AVA in

unc-7 mutants, concurrent with restored continuous forward

movement and reduced backing (Figure 5B), the calcium level

in AVA/AVE was also significantly reduced (Figures 6A–6A00).
However, an expression of UNC-7 in AVA of unc-9 unc-7

mutants did not result in a rescue of forward movement (Fig-

ure 5A), implying that the reduction of AVA/AVE activity depends

on restoring AVA-A coupling.

Second, AVA exhibited an increased electrical activity and

increased membrane input resistance in unc-7 mutants by

in situ whole-cell recordings. AVA exhibited spontaneous excit-

atory electric activity (Figure 7A). The peak amplitude (Figure 7B),

but not the frequency (Figure 7C), of such activities was signifi-

cantly increased in unc-7 animals; the increased amplitude

was rescued when UNC-7 expression was specifically restored

in AVA (Figures 7A–7C). Although there was no significant

change in the resting membrane potential of AVA (Figure 7D),

their input membrane resistance was significantly increased in

unc-7 mutants (Figure 7E). Such an increase was also rescued
580 Neuron 72, 572–586, November 17, 2011 ª2011 Elsevier Inc.
when UNC-7 expression was restored in AVA

(Figure 7E). These results indicate that UNC-7-

mediated AVA-A coupling functions as shunts

to dampen AVA’s excitability and activity.

Third, an increased backward premotor inter-

neuron activity contributes to the hyperacti-

vated backing in innexin mutants. In addition

to electrical coupling with AVA, A motoneurons

also receive excitatory chemical synaptic inputs

from AVA and AVE (Figure 1B). Hyperactivated

backward premotor interneurons in innexin

mutants could therefore lead to an increased

chemical synaptic output to A motoneurons

and contribute to their preference for backing.

Indeed, when we silenced the activity of premo-

tor interneurons of the backward circuit and
PVC by Pnmr-1::TWK-18(gf) (Figure S4), hyperactivated backing

in these innexin mutants was effectively prevented (Figure S5B;

Movie S5, parts B–D). Such an effect was mimicked by express-

ing tetanus toxin, a specific blocker of chemical synapses

(Macosko et al., 2009) in the same set of premotor interneurons

(Figure S5B; Movie S5, part E). Both Pnmr-1::TWK-18(gf)

(Figure S5B; Movie S5, part A) and Pnmr-1-Tetanus toxin

(Movie S5, part F) prevented continuous backing in wild-type

animals. These results further support the idea that chemical

synaptic output from backward premotor interneurons is

required to sustain backing.

Together these results indicate that AVA-A coupling acts as

shunts to dampen the activity of backward premotor interneu-

rons in wild-type animals, which reduces their chemical synaptic

inputs onto A motoneurons and prevents the hyperactivation of

backing.

AVA-A Coupling Suppresses Endogenous AMotoneuron
Activity to Permit Forward Movement
Reducing backward premotor interneuron activity consti-

tutes only half of the role of AVA-A coupling in promoting

forward movement. Although the AVA/AVE-silencing transgene



Figure 7. AVA Neurons Exhibit Increased Electric

Activity and Input Resistance in unc-7 Mutants

(A) Representative traces of spontaneous membrane

potential changes in AVA neurons in wild-type animals,

unc-7(e5) mutants, and unc-7(e5) expressing UNC-7 in

AVA (Prig-3::UNC-7).

(B) The averaged peak amplitude of the spontaneous

membrane potential changes was significantly increased

in unc-7 mutants and was reverted to wild-type level by

restoring UNC-7 expression in AVA.

(C and D) The frequency (C) and resting membrane

potential (RMP; D) were not significantly changed in unc-7

mutants.

(E and F) Membrane input resistance (Rin) for AVA was

increased in unc-7 mutants.

(E) Representative traces of voltage responses to injected

currents for AVA neurons in wild-type, unc-7(e5), and

unc-7(e5) animals with a restored expression of UNC-7 in

AVA (Prig-3::UNC-7).

(F) The increased membrane input resistance in unc-7

animals was restored by UNC-7 expression in AVA.

*p < 0.05 against wild-type by Student’s t test. Error bars

represent SEM.
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effectively inhibited backing in innexin mutants (Figure S5B), it

did not suppress kinking: these animals still adopted a kinked

posture (Figure S5A, bottom middle) instead of moving forward

(Figure S5B; Movie S5, parts B–D). Consistently, although they

no longer generated the backing-associated A > B pattern,

they continued to establish the A = B pattern (Figures 8A–8A00).
This contrasted the case in wild-type background, in which

inactivating AVA/AVE by the same transgene led to an exclusive

B > A pattern (Figures 8A–8A00) and forward movement (Figures

S5A and S5B; Movie S5, part A).

The failure to further reduce A activity when AVAwere silenced

(Figures 8A–8A00; Figure S4) is consistent with the notion that AVA

and A are uncoupled in these innexin mutants. However, ob-

serving a persistent A motoneuron activity in the presence of

this transgene was unexpected because silencing AVA and

AVE eliminates both chemical and electrical synaptic inputs to

A motoneurons (Figure 1B). The residual A motoneuron activity

may therefore represent a premotor interneuron-independent

(referred to as endogenous) motoneuron activity that is sup-

pressed by their coupling with AVA to allow the establishment

of a B > A output pattern in wild-type animals. Alternatively,

because transient cell coupling may be necessary for circuit
Neuron 72, 572–
maturation, a persistent A motoneuron activity

could reflect the consequence of miswiring in

these innexin mutants in that they receive aber-

rant inputs from other premotor interneurons.

To distinguish between these possibilities, we

used TWK-18(gf) to reduce the activity of all pre-

motor interneurons (Experimental Procedures).

In the wild-type background, this transgene

led to prolonged pausing in a straight body

posture (Figure S5A, top right), coinciding with

reduced VB9 and VA8 activity (Figures

8B–8B00). Sluggish forward motion was occa-

sionally observed in these animals (Movie S6,
part A), probably due to an incomplete silencing of the forward-

circuit activity. Innexin mutants expressing the same transgene,

however, continued kinking (Figure S5A, bottom right; Movie S6,

parts B–D), failed to execute continuous forwardmovement (Fig-

ure S5B), and only generated an A = B pattern (Figures 8B–8B00).
Therefore, the residual VA8 activity reflects an endogenous A

motoneuron activity that is normally suppressed by AVA-A

coupling. The suppression of this endogenous activity is neces-

sary for wild-type animals to establish a B > A pattern and to

execute continuous forward movement.

Taken together, gap junctions in the backward circuit sup-

press the activity of both backward premotor interneurons

and A motoneurons, maintaining the backward circuit at a low

output state and promoting continuous forward movement.

Premotor InterneuronsModify EndogenousMotoneuron
Activities to Establish Imbalanced Motoneuron Outputs
Silencing all premotor interneuron inputs still failed to suppress

kinking or to alter the A = B output pattern in innexin mutants.

This suggests that in innexinmutants, not only A but also Bmoto-

neurons are uncoupled from premotor interneurons, and they

exhibit an equal output of a premotor interneuron-independent,
586, November 17, 2011 ª2011 Elsevier Inc. 581
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Figure 8. AVA-A Coupling Suppresses an Endogenous A Activity to Permit Forward Motion

(A–A00) Reducing backward premotor interneuron activity did not rescue kinking.

(A) Representative motoneuron calcium traces of wild-type (top) and unc-7 (bottom) animals that expressed silencer transgene TWK-18(gf) in backward circuit

premotor interneurons and PVC.

(A0 and A00) A quantification of the differential activity between VA8 and VB9.

(B–B00) Reducing all premotor interneuron activity did not rescue kinking. Representative traces (B) and quantification (B0 and B00) show VA8 and VB9 activity when

all premotor interneurons were inactivated by TWK-18(gf) silencer in wild-type and unc-7mutants. Red dots represent the mean VB9 activity of an animal during

the indicated mode of movement; the connected blue dots represent VA8 activity during the same period of movement; fwd indicates forward motion; kink

indicates kinking. The mean activity difference was normalized by [VB9 � VA8]/[VB9 + VA8]. ***p < 0.001; **p < 0.01; *p < 0.05; n.s. by the Mann-Whitney U test.

(C) The body curvature of a wild-type adult with all premotor interneurons physically removed. It exhibited kinked posture characterized by discontinuous and

opposing body bends (white arrows).

(D) A model for how the C. elegans motor circuit regulates directional movement. Higher positions represent higher activity states of premotor interneurons and

motoneurons. Cylinders represent gap junction (GJ); arrows indicate chemical synapse; arrowheads show depolarizing signal; colored lines represent reciprocal

inhibition; >>> indicates that the diagram on the left is a preferred state; yellow circles show endogenous activity. Left: UNC-7-UNC-9-mediated GJs between

premotor interneurons and motoneurons facilitate the establishment and transitions between the B > A and A > B states that drive forward or backward

movements, with B > A being the preferred state. Right: in the absence of these couplings, the motor circuit exhibits either the B = A state that results from

motoneurons’ endogenous activity and leads to kinking or an A > B state that results from an increased activity and chemical synaptic output of AVA, which leads

to hyperactivated backing.
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endogenous motoneuron activity that contributes to kinking. All

direct inputs from AVB to B motoneurons are gap junctions (Fig-

ure 1B); therefore, both forward and backward premotor inter-

neurons employ gap junctions to suppress or modify the endog-

enous motoneuron activity to prevent their output equilibrium.

If the endogenous motoneuron activity observed in innexin

mutants reflects a state of the wild-type motoneurons when

they become uncoupled from the motor circuit, the physical

removal of premotor interneurons in wild-type animals should

reveal such a state and recapitulate kinking. Indeed, when all

premotor interneurons were ablated in wild-type animals (Fig-

ure S6; Experimental Procedures), they generated discontinuous

short body bends characteristic of kinking (Figure 8C; Movie S7).

This contrasts the consequence of hyperpolarizing all premotor

interneurons by TWK-18(gf) in wild-type animals, which could

effectively reduce motoneuron activity through gap junctions,

hence preventing body bends (Figure S5A, top right; Movie S6,

part A). Therefore both A and B motoneurons exhibit activities

in the absence of premotor interneuron inputs; their coupling

with premotor interneurons is necessary for a separation of their

activity level, which prevents kinking and underlies directional

movement.

DISCUSSION

A Model for Decision Making in Directional Movement
In this study, we show that an imbalanced activity of B and A

motoneurons, the output modules of the forward and backward

circuits, underlies the directionality ofC. elegansmovement (Fig-

ure 8D). We demonstrate that gap junctions between premotor

interneurons and motoneurons (GJ, illustrated as cylinders in

Figure 8D) are necessary for establishing an imbalanced moto-

neuron output. In the absence of these couplings, an endoge-

nous A and B motoneuron activity (yellow circles in Figure 8D)

leads to an equal motoneuron output and nondirectional move-

ment (kinking). We propose that the reciprocal activation of pre-

motor interneurons of the forward and backward circuit (colored

lines in Figure 8D) leads to the establishment and the switching

between the A > B and B > A patterns through modifying the

endogenous B and A motoneuron activity.

We further demonstrate that UNC-7-UNC-9-mediated gap

junctions in the backward circuit maintain the backward circuit

at a low state by suppressing the activity of both AVA premotor

interneurons and A motoneurons. They establish the intrinsic

bias (>>> in Figure 8D) for a higher forward-circuit output

(B > A) and are necessary for continuous forward movement.

Such a bias ensures that only upon strong backward-premotor

interneuron activation (input, illustrated as arrowheads in Fig-

ure 8D) is an A >Bpattern established via the increased chemical

(arrows in Figure 8D) and electrical synaptic inputs to A moto-

neurons to permit brief backing.

An Analogous Operation between C. elegans and Other
Motor Circuits
Our studies indicate that an endogenous activity of the

C. elegansmotoneurons is modulated by premotor interneurons

to exhibit different output levels. It supports a notion that premo-

tor interneurons of the forward and backward circuits function as
organizers to establish the differential output pattern between

distinct motoneuron pools. Such an operational model bears

intriguing resemblance to that of other motor systems. For

example, mouse spinal cord premotor interneurons act as orga-

nizers of the oscillating motoneuron activity to establish an alter-

nate, left-right firing pattern that permits walking and prevents

hopping of the hind limbs (Crone et al., 2008; Lanuza et al.,

2004; Zhang et al., 2008). Critically, in both motor systems,

inputs from specific interneuron pools are necessary to break

the equilibrium of an otherwise synchronized motor output

pattern.

Remaining Questions for Decision Making in Directional
Movement
This study mainly focused on the role of premotor interneuron-

motoneuron coupling in the backward circuit in directional

movement; questions remain regarding how other circuit com-

ponents contribute to such a decision-making process.

How premotor interneurons of the forward circuit instruct

directional motion remains elusive. UNC-7 and UNC-9 innexins

mediate heterotypic gap junctions between AVB and B moto-

neurons (Starich et al., 2009). Restoring their expression in the

forward circuit, however, did not rescue forward movement in

respective innexin mutants (Figure 5A; discussion in Starich

et al., 2009), whereas restoring AVA-A coupling resulted in

a robust rescue (Figures 5A and 5B). This implies either that

the electrical coupling in the forward circuit plays a modulatory

but less essential role (compared to those of the backward

circuit) for forward movement or that in these innexin mutants,

the communication between AVB and B is partially retained

through AVB-mediated but indirect synaptic inputs onto B.

How AVB-B coupling modulates B activity during directional

movement remains to be better defined. Moreover, how PVC,

premotor interneurons with chemical synaptic inputs onto B,

contribute to forward movement should also be addressed in

future studies.

This model predicts that the reciprocal activation of the

forward and backward premotor interneurons establishes an

imbalanced motoneuron output. Cross-inhibition between the

C. elegans forward and backward circuit was proposed to

underlie directional movement (Wicks et al., 1996; Zheng et al.,

1999). We observed an anticorrelation between the activation

for the forward and backward premotor interneurons, providing

the first direct evidence for such a mechanism. How AVA/AVE

and AVB cross-inhibition is established remains to be resolved.

Although AVA receive direct synaptic inputs from AVB, AVA

have no direct synaptic inputs to AVB (White et al., 1976). RIM,

an interneuron that forms gap junctions with AVA and has

synaptic inputs to AVB, was proposed to inhibit AVB activity

through releasing tyramine (Alkema et al., 2005; Pirri et al.,

2009). Supporting the notion that AVA activate RIM via gap junc-

tions to inhibit AVB, RIM exhibited coactivated calcium tran-

sients as AVA/AVE (Figure S1C).

Gap Junctions Negatively Regulate Circuit Output
AVA-A coupling establishes a circuit bias for forward movement,

highlighting a role for gap junctions in affecting circuit properties

and outputs. Recent studies have begun to reveal more
Neuron 72, 572–586, November 17, 2011 ª2011 Elsevier Inc. 583



Neuron

Innexins Regulate Motor Circuit Output
sophisticated effects that gap junctions exert on coupled

neurons and neural networks than simply ensuring their

synchrony (Rela and Szczupak, 2004).

In the C. elegans motor circuit, AVA-A coupling leads to

a decreased input membrane resistance in AVA, resulting in

a reduced backward-premotor interneuron activity. Such an

outcome resembles a cell coupling-mediated shunting effect

that alters neuron and circuit output: when current flows from

amore positive cell to amore negative cell, the first cell becomes

less depolarized (Bennett and Zukin, 2004). These gap junctions

allow motoneurons’ feedback on premotor interneurons to

create the appropriate motor pattern.

Gap junctions between AVA and A result in a reduced Amoto-

neuron output throughmultiplemechanisms: (1) by shunting AVA

activity, these gap junctions decrease the chemical synaptic

inputs to A; (2) AVA-A coupling dampens the endogenous A

activity, probably also through shunting; and (3) an asymmetric

property of heterotypic gap junctions could further assist AVA

in maintaining A motoneurons at a low state through couplings.

Asymmetric electrical synapses occur when neurons of dis-

tinct membrane properties are coupled (Giaume and Korn,

1983) and/or when coupling is mediated by heterotypic gap

junctions (Phelan et al., 2008). Indeed, UNC-7-UNC-9 hetero-

typic gap junctions exhibit some asymmetric gating properties

in Xenopus oocytes (Starich et al., 2009). Moreover, in wild-

type animals, hyperpolarizing AVA and AVE led to an effective

reduction of A motoneuron activity (Figure 8A); by contrast, hy-

perpolarizing A motoneurons, although they prevented animals

from backing (Movie S3, parts B–D), failed to reduce AVA activity

(Figure S7), supporting an instructive role of AVA on A. It is

plausible that through both cell coupling-mediated shunting on

AVA and A and an asymmetric junctional property that favors

AVA to A communication, gap junctions between AVA and

A maintain the backward circuit at a low activity state, enabling

a bias for higher forward-circuit output and continuous forward

movement.

In summary, gap junctions play a critical role in C. elegans

directional motion. Instead of being static connecting modules,

they alter the activity of coupled neurons, tip the output balance

between the forward and backward circuit, and establish the

intrinsic properties and output bias of the C. elegans motor

circuit. Gap junctions may serve similar regulatory roles in other

neural networks, given their presence in most mature nervous

systems.

EXPERIMENTAL PROCEDURES

Strains and Constructs

Standard methods were used for culturing and handling animals on Nematode

Growth Medium plates (Brenner, 1974). unc-7(e5), unc-9(fc16), and unc-9

(fc16) unc-7(e5) null mutants were used throughout the study. Interneuron

cameleon reporter lines hpIs157, hpIs179, and hpIs190 were generated as

follows: pJH1579, pJH1973, and pJH1969 were individually coinjected with

a lin-15 rescuing plasmid into lin-15(n765), integrated into the C. elegans

genome, and outcrossed four to six times against the N2 strain. pJH1863

was coinjectedwith a lin-15marker into lin-15(n765) to generate the transgenic

array hpEx1911. hpEx1911 was crossed into unc-7(e5) lin-15(n765), inte-

grated, and outcrossed three times to generate the motoneuron cameleon

reporter hpIs171. Neuronal subtype promoter-driven expression of UNC-7,

UNC-9, TWK-18(gf), and Tetanus Toxin constructs were coinjected with
584 Neuron 72, 572–586, November 17, 2011 ª2011 Elsevier Inc.
dpy-20(+) or Podr-1::GFP injection marker in unc-7, unc-9, and unc-9 unc-7

mutants with or without the dpy-20(e1218) background to generate respective

transgenic animals. The transgenic arrays for TWK-18(gf) were outcrossed

against the N2 strain from unc-7, unc-9, and unc-9 unc-7 backgrounds as

controls for their effects in innexin mutants. akIs11 was obtained from A.V.

Maricq (University of Utah) and crossed into hpIs179 and hpIs190 for neuronal

ablation studies. A list of constructs and transgenes generated for this study is

provided in Supplemental Experimental Procedures.
Calcium Imaging

Microscope Setup

Images were captured on a Zeiss Axioskop 2 Plus equipped with a motorized

stage (ASI MS-4000), a dual-view beam splitter (Photometrics, Tucson, AZ)

and a Charge-Coupled Device camera (Hamamatsu Orca-R2). The excita-

tion light, derived from X-Cite (EXFO Photonic Solutions, Mississauga, ON,

Canada), was reduced to about 1% by iris of the light source and Neutral

Density filter. The fluorescent images were split by dual-view with a CFP/YFP

filter set and projected onto the CCD camera operated by Volocity (Im-

provision, Lexington, MA) or MicroManager (http://micro-manager.org). The

43-binned images were obtained at 50–100 ms exposures, 10–20 fps for

5 min. The YFP and CFP fluorescent intensities were measured by in-house-

developed ImageJ plugins (http://rsb.info.nih.gov/ij).

Automated Tracking System and Motion Analysis

Calcium imaging experiments were performed either by manually recentering

moving animals on the stage or through an in-house-developed acquisition

software that controls the camera andmotorized stage throughMicromanager

and ImageJ. Each frame of the acquired images was subjected to real-time

processing to detect targeted cells, track objects, record stage positions,

and recenter the tracked object. During postimaging processing, two regions

of interest were set to detect the anterior-posterior axis. VA8 and DB6 were

used as anterior and posterior cells, respectively, in motoneuron imaging.

AVA/AVE or AVB and cluster of cells were used in interneuron imaging. The

cell position at each time point was determined based on the coordinates of

the stage position and cell position in the field of view, and the velocity was

calculated by changes in the cell position between each frame. The forward

and backward directions were determined by comparing changes in the ante-

rior-posterior axis.

Interneuron Imaging

Interneuron imaging was performed under two different conditions.

(1) Imaging when animals were allowed relatively free movement (Figures

1D, 1E, and 6). This condition allows correlation between motion and changes

in calcium signals. Animals were placed on freshly made 2% wet agarose

pads, mounted with a few microliters of M9 buffer, and imaged with a 163

objective through the automated tracking system. We imaged multiple inter-

neurons as a single ROI in the head region of hpIs190 (AVA and AVE) or a single

interneuron as an ROI in hpIs179 (AVB).

(2) Imaging when animals were allowed restricted movement. Single-neuron

imaging of AVA or AVE with hpIs157 and hpIs190 (Figure 1C; Figures S1B,

S1C, S3, and S7), and AVB and AVE simultaneous imaging in a strain carrying

both hpIs157 and hpIs179 (Figure 1F), was carried out under this condition. In

both hpIs157 and hpIs190, the closely spaced cell bodies prevented precise

tracking at individual neuron resolution when animals were allowed free move-

ment. Animals were mounted on dried 5% agarose pads with a few microliters

of M9 buffer, covered by a coverslip, and imaged with a 633 objective. Under

this condition, the movement of animals was restricted to allow the separation

and tracking of signals from individual neurons, and we observed that all four

head neurons, AVA, AVE, RIM, and AVD, in the hpIs190 (Pnmr-1::D3cpv) strain

showed synchronized calcium transients, except for AVD, which had no

obvious change of calcium transient profile (Figure 1C). The YFP/CFP ratio

showed correlation with the relatively large movement under this recording

condition (data not shown). AVE and AVB coimaged showed out-of-phase

profiles and negative correlation (Figure 1F). The YFP/CFP value for AVE and

AVB recording in each sample was normalized by mean and SD. Pearson’s

correlation coefficient was determined by R. Under this recording condition,

backward motion was hyperstimulated compared to standard culturing

conditions.

http://micro-manager.org
http://rsb.info.nih.gov/ij
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Interneuron Calcium Signal Analysis

For correlation analyses of the averaged YFP/CFP ratio change during transi-

tions of directions, YFP/CFP ratios before and after directional change were

collected and normalized against the YFP/CFP value immediately before the

directional change. Traces from nine AVA/AVE and 15 AVB recordings were

used for correlation analysis in Figures 1D and 1E. For correlation analysis

between AVE and AVB activity, seven AVE/AVB recordings were analyzed to

obtain the data shown in Figure 1F.

To compare the interneuron calcium signals between wild-type and innexin

mutant animals, we compared the averaged YFP/CFP ratio instead of DR/R.

YFP/CFP ratio for each sample during 5 min was presented by raster plots.

The averaged YFP/CFP value over 5 min of recording for each sample was

considered a single data point and presented as scatter plots (Figure 6; Figures

S3A, S3B, and S7). This is because neurons analyzed in this study showed

relatively high-frequency activation, and we rarely observed the decline of

the calcium level to the basal value. In this case, measuring DR/R probably

leads to an inaccurate measurement of neuronal activity.

Motoneuron Imaging

Imaging ofmotoneuronswas carried out with a protocol modified from the AVA

and AVE single-neuron imaging method (Figures 2, 4, and 8; Figure S1D). We

dropped 20 ml M9 buffer onto a 2% dried agarose pad, and �20 adult animals

were placed in the liquid as spacers. Ten last-larval stage (L4) hpIs171 animals

wereplaced in thebuffer, coveredbya coverslip, and imagedwith a633objec-

tive. Neurons were identified by their stereotypic anatomical organization.

Most data presented in Figures 4 and 8were obtained bymanually recenter-

ing the moving animals during the recording and scoring the forward, back-

ward, and kinking motion manually based on the direction of the body-bend

propagation. During later parts of the study, we utilized an in-house-developed

automated tracking software to recenter animals, which allowed the auto-

mated analysis of the directional movement, as well as correlation between

calcium transients with directions and velocity (Figures 2A and 2B, bottom).

Samples that show sustained forward or backward movement (Figures 4

and 8), instead of frequent directional change (Figure S1D), were quantified

for the mean calcium level in continuous directional movement (Figures 4

and 8). Locomotion direction and calcium transients showed similar correla-

tion pattern in both data sets.

Motoneuron Calcium Signal Analysis

Periods of backward, forward, and kinking were scored for each imaged

sample. The mean of YFP/CFP ratios for VA8 and VB9 during these periods

was considered the averaged activity for VA8 and VB9 for each animal during

the indicated mode of locomotion. The difference between the VB9 and VA8

activity level in each animal was normalized by [VB9 � VA8]/[VB9 + VA8].

For correlation analysis, VA8 and VB9 transients of each sample were cor-

rected for photobleaching by dividing fitted linear regression line, normalized

by mean and SD. For correlation analyses of VA8 and VB9 activity change

during the transition of directions, eight VA8/VB9 imaging traces were used

for correlation analyses. Pearson’s correlation coefficient was calculated by R.

Other Experiments

Detailed procedures for curvature analysis, automated movement analysis,

electrophysiology, molecular biology, neuron silencing, ablation and chemical

synapse inactivation, immunofluorescent staining, and statistical analysis are

provided in Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, Supplemental Experimental

Procedures, and seven movies and can be found with this article online at

doi:10.1016/j.neuron.2011.09.005.
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